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DETECTION OF NONLINEAR TRANSFER FUNCTIONS

BY THE USE OF GAUSSIAN STATISTICS

By Jack G. Sheppard
Manned Spacecraft Center

Co SUMMARY

-Failure detection will be an essential part of electronic systems in future space
programs. It would be highly desirable to be able to detect incipient failures whtle
equipment 18 on-line. The possibility of using the statistics of on-line signals as an
indicator of incipient faflures is discussed in this report. As a part of this discussion,
the concepts of random variables, functions of random variables. and stochastic proc-
esses are defined in a limited sense. A nonlinearity test that uses ratios of the mo-
ments of a Gaussian random variable is developed and presented. The results of this
investigation are encouraging, and the results indicate that further work should be
pursued. The next logical step would be to apply nonsupervised learning theory to
determine the statistics of nonstationary input signals and to use the results to detect
nonlinearities in the output signals of electronic systems.
vu. |NTRODUCTION

By
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In the manned spacecraft program, great concern exists about operational reli-
ability; no effort is spared to ensure that, even if the mission cannot be completed
satisfactorily, the flight crew is returned to earth safely. One of the foundations of
the operational-reliability philosophy is redundancy. Many kinds of redundancy are
used (e.g., redundant testing, redundant inspection, redundant functions, and redun-
dant equipment). All these techniques are used to ensure that only reliable equipment
is installed in a spacecraft and that, if any item fails, another piece of equipment or
mode of operation is available to replace it.

Yy
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In the past, the greatest emphasis has been placed on exhaustive testing before
launch. Usually, the equipment experienced more hours of testing than were experi-
enced in flight. Degraded operation was permitted in the backup modes, but a signifi-
cant failure caused immediate mission termination. Because of the nature of future -
manned spacecraft programs, emphasis will be shifted more toward mission-success _—
techniques. For space-station operations, permanence will be emphasized, and space
shuttle vehicles with 100-mission lifetimes will spend more time in space than on the
ground. Emphasis will be on techniques that minimize ground testing and that avoid
mission termination because of equipment malfunction. Degraded backup modes of
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L ~ . RANDOM VARIABLES - .-

An experiment may be considered in which a marble is selected from a jar con-
taining marbles of different colors. If a number is assigned to each color, then the
experiment is as follows.

1. A marble i3 selected. -
2. The color of the marble is determined.

3, 'The number that corresponds to that color is logged. | ,

Thus, an experiment is performed, an outcome is observed, and a number i8 assigned
to the cutcome. This statement is the definition of a random variable (ref. 1). A ran-

(!03b variable is a function from a set of outcomes of an experiment to the set of real
numbers. o s

A different experiment might be the selection of a number from the set of all real
numbers. In this case, the functional value of the random variable could be the outcome
of the experiment itself. This is the type of random variable considered in this report.

FUNCTIONS OF RANDOM VARIABLES

Once a random variable has been defined, the range of the random variable (the
set of real numbers associated with the experiment outcomes) can be manipulated by
% any one of a multitude of functions. : The range may be incremented by a constant, mul-'
v tiplied by a constant, subjected to a polynomial transformation, or whatever the imagi-
) nation can devise. Linear transformations, polynomial transformations, aund the
N densities and moments of random variables will be discussed in this report.
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Let x be the value of the random variable X. Then, a linear transformation of
X is

 ggl) =ax +a, 1)

A polynomial transformation of X is

P

gxet)=ai+azx+a3xa+...+anxn'1 ' (@)

The density of a random variable is a function that describes the relative fre-
quency of occurrence of the x~-values in the range of the random variable. Many types
of densities exist. The uniform density, for example, states that the relative frequency
of occurrence of the x-values is constant over a range. This report i8 concerned with
the Gaussian or normal density, which is described by the function

1 x%f2d? -

| ix(X)—a‘,—

f\\ ’ ' ' P
where o isa spreading !actor. The graph .
of the Gaussian density function is shown o
in figure 1.

As indicated in ﬁgure 1, the x-valueﬁ A
tend to cluster around a central point, with 450 f .
a decreasing frequency of occurrence as a *ﬂ'c’; 1
function of distance from this point. ;

The probability that X takes ona

vz:tluelenssthanorequall:o:i:1 is called . : . oL
the distribution function and is expressed .- E}gum ¥. - Gaussian density function, : ..-

by . ?'f’ ‘ .
il A aLftﬁs)} ‘o ;3 S8 ;xs Gy
’T‘l o %o 3

F (x)np(xsx).-—-- ' (4)

'(rhe c‘lienatty functton is the derivative with respect to X of the distz'ibutlon function
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The actual probability that the outcome of the experiment will be between X, and
Xq (or equal to either) is found by
2 2/, 2
P(x1 SXs xz) - P /20 dx 6)

o\2n
X

1

This integral cannot be evaluated by normal means; therefore, numerical techniques
must be employed. However, the normal density has been evaluated thoroughly, and
tables of values are available in almost any text dealing with statistics (ref. 2).

Moments indicate where the functional values of a random variable are located

and how the values are spread in the set of real numbers. The equation for the 1th

moment of the random variable X is

m, (x) = / xty () dx (©)

Central moments are formed by subtracting m, from each value of x in equation (8);
that is, I : ,

The first moment, called the mean, indicates where the functional values of X are
centered in the set of real numbers. The second central moment, called the variance,

is usually designated by the symbol 02 and indicates how widely dispersed the func-
tional values of X are. Higher order moments also indicate dispersion of the
x values.

LINEAR TRANSFORMATION OF GAUSS {AN RANDOM VARIABLES

x
Y '
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where X is a Gaussian random variable. If a is positive, -then

P(y = yl) = P(x = y_:) g ©)

o« AN IR AT i e o S 2 SOt i

or

Fy®) = Fy(Y) - (10)

" 1f equation (10) i8 differentiated with respect to y, : P -

YITITY0 GUEG Y. SO o RN

o 'x(a) _— Y

If a is negative,

</ paohy :‘-‘d" 'i ;%’Q‘,’" 2 ,’;]"% .

* (12)
\J ' )
or .
(13)
If equation (13) is differentiated with respect to y, R
1. \} .
ty®)=-3 'x(%) LA (14)

A

Thus, by combining equations (11) and (14), ', ’;’

(15) .
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Two important points become evident as a result of the preceding discussion. First,
the linear transformation of 2 Gaussian random variable results in a Gaussian random
variable and, second, the variance of the resulting random variable can be expressed

as the variance of the previous random variable multiplied by the square of the trans-
formation constant.

MOMENTS OF A GAUSSIAN RANDOM VARIABLE

Because
o C i
g 3 ,
I L L (17
, | VT -
therefore,
| wd 12172
| o ax =t/ (18)
where 3 :
ﬁ . (19)
Leibniz's rule for differentiation states that ff ‘" . - o
| JLE pp) ‘
h(t) = L(x, t) dx . (20)
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B(t)
h'(t) = £[8(), t]8'(t) - ta(t) t]a' @) + / © 2,6x,t) dx (21)
a

By applying Laibniz's rule to equation (18), equation (22) is obtained.

-]
2
2 -bx 1/2( 1\ -3/2
-X @ dxs=7 - 22
[ - et A D @
If equation (18) is differentiated n times with respect to x,
0 2 S s v 'h‘ ' . v ’
2n_-bx 1/2 (1)@(5) (2n - 1) -(2n+1)/2 - (23)
X @ d‘ ay e e b -
[ N (=5
or
a8V s Guet) [T 0 gy
. N (34)
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1f both sides of equation (26) are divided by o\23, then

2/..2

1 zn-x,zc an

o x e ax=1-3-5---@n-1) @
‘-o‘ Y '

which 18 a5 the valne of the 20 moment of the random variable. Thus, for
uenmomntso(a&nssianundom‘;riahle,

,,.i=1-:-s---(a-1)o‘ 28)
It can be shown that mi:omnsnpddmeger o

WW&aWMWem&Mh&
following two ways. o
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STOCHASTIC PROCESSES

.
]

A precise definition of stochastic processes has many ramifications. For the
purposes of this report, a stochastic process will be considered to be a contimious rep-
etition of the experiment discussed in the section entitled '"Random Variables''; that is,
at all instants of time, the experiment is being performed, and an outcome is available.
Thus, at any instant of time, a random variable exists, and a range value can be ob-
tained as a function of the distribution of that random variable. An example of a sto-
chastic precess could be the voltage across the terminals of a battery. I the battery s
charged, the voltage has little variation; therefore, the stochastic process is not very
interesting. A more interesting stochastic process is the voltage across the terminals
of an antenna. This voltage is the sum of various kinds of noise and the diiferent kinds
of communications signais currently in use. The contrast between these two kinds of
stechastic processes illustrates an important property of some stochastic precesses —
stationarity. The battery voliage does not change; it remains stationary. The antenna
voltage moves about drastically. Actually, the process need not sit still to be station-
ary. A process is strict-sense stationary if its statistics are not affected by a shift in
the time origin. It is wide-sense stationary if its mean is constant and its autocorrela-
tion is a function of the time separation caly. Because 2 Gaussian process is uniquely
determined by its first two rmoments, a wide-sense stationary Gaussian process is also
strict-sense stationary and has a constant mean and variance. This report is primarily
concerned with Gaussian processes.

GAUSSIAN PROCESS SAMPLING

If the normal signal of some linear system is assumed to be a stationary Gaussian
stochastic process, then, at any point in time, the signal value is the functional value
of a Gaussian random variable with a fixed mean and variance. Such a random variable
from a stochastic process is called a sample. By taking many samples from a process,
inferences can be drawn concerning the distributicn of the source process. The more
samples drawn, the better the inferences will be. In this report, the possibility is
investigated that very small amounts of distortion in a supposedly linear transfer of a
stationary Gaussian stochastic process can be detected by examination of the statistics
of a sample from that process. It is not necessary actually to draw samples from a

"~ stochastic process in this investigation. A more convenient method is to use a comput-

er to generate pseudorandom Gaussianly distributed samples, and this was the method
used to generate the data presented in this report.

RATIDS OF MOMENTS
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3. Calculation of m, directly

4
4. Evaluation of the ratio (31!122 -m 4')/311122, which ideally should equal zero
5. Repetition of steps 1 to 4 a predetermined number of times

6. Plotting of a histogram of the values obtained from step 4

Computer nomarion, normalized

Results obtained by using this computer wr
program are shown in figure 2. In one 5

case, only 50 numbers were used in the §0

set of random numbers; in another case, - 5

200 numbers were used and, in a third .§ ")

case, 500 numbers were used In each 3

cage, 1000 values were used in the histo- S o

gram,. As always in sampled statistics, 3

the ideal ratio of zero was not achieved. g x

However, with sample sizes as large as =7 " 2

500, the law of large numbers (ref. 3) _iif - ) N

applies, and the values are firmly clus-"- ~;§ 2 3
tered around zero with a relatively small*® - ’ ("2 "'J"'l

variance. These data formed the basis "

for a determination of the level of detect-.  Figure 2. - Sampled standard normal

able distortion (discussed subsequently), moments for the ratio
because they represent the ratios of mo- ) 2 )/3 3
ments to be expected in an undistorted - My = mgl/dmy .
Gaussian process. .

In reference 4, information is provided from which the statistics of equation (31)
can be calculated.
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C4 = mﬁm [(n + 1)m4 - 3n- l)mzz] (34)

‘Then _ "

P

| 3
. {ga -~ Y- 2o 3 da-12 | k“ +l)m, - fg‘ - "“‘2] (35)
nf + n(n - 1o - 20 - 3)) | my |

or

N

‘ :'r B (36)

&
Therefore,
e ) N
Y
B }l’ S “'“‘,“k " "i. > (37)
1 ._'r! ' -
- ' y
and
(38)
. ;,r,,’-. ) :
'-,.»-4-.4.14—7—«-4--1 = o
o e S z (;cn bc o .",'?,J‘?'(‘

Alaolnreference4, the statistics of r ﬁ!theasmmpﬁonlsmadewthe sam-

plesare!romaGausslanpomla.ﬁon)areltﬂted W e ’,_qe, -,
cidl o l‘
p‘(r)-O‘)f e o (39)
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ugle) = e‘[( 65, 4011 _ 136 605 ) (1)
Bn 16n
uyr) =3+ 408 32106 1us 8 42)
n n

Thus, for very large n (n > 100), the meanof {1 - m 4/Bm is zero, and its variance
approaches 1. 7/n.

DISTORTION

Flectrical engineera geem to he divided into two groups. One group is concerned
with analog signals that have continuous properties, and this group of engineers speaks
in terms of linearity, distortion, and harmonics. The other group is concerned with
probability theory and speaks in terms of samples, distributions, and statistics. Itis
difficult to make a correlation between the two groups. Because, in this report, sam-
ple statistics are used to investigate linearity, a bridge between the two groups must
be used. An attempt was made to correlate harmonic-distortion levels of sine waves
with shifts of the statistics of Gaussian random variables.

Distortion {8 defined as the percentage of content, in a signal, of the harmonics
of a sine wave (ref. 5). I the Vi (where i=1, 2, ..., n) are the magnitudes of har-
mcaically related sine waves in a signal, with \(1 being the magnitude of the fundamen-
tal signal, the percentage of total harmonic distortion D is

1

..n‘..a

: 2 + v,, 00 4 V
D=100 g o (43)
Vl :

Distortion is produced when a sine - :
wave is subjected to a nonlinear transfer [\ X Yok l
and 18 usually an undesirable effect that - i =
indicates unsatisfactory operation, In U L
figure 8, the droop in the v, /v . trans-' ¥in
fer curve causes the peaks of the input - _
sine wave to be flattened. If the input Fignre 3. - Transfer-function curve.

were a Gaussian stochastic process of
approximately th2 same size as the sine -
wave, the input would also experience Ilattenlng of the larger values. For the ratio
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obtajned. The degree of shift would depend on the amount of distortion. Computer
programs written to generate data for correlation of distortion levels with moment-
ratio shifts are described in appendixes B and C.

CORRELATION OF SIGNAL MAGNITUDES

Processes '"'of approximately the same size'' were referred to previously; how-
ever, this terminology is not very precise. For the purposes of this report, the
root mean square (rms)value of a process is used to indicate its ''size.’" For a sine
wave, the rms value is 0. 707 times the peak value. For nonsinusoidal processes, the
rms value must be calculated for each case. The rms value for a zero-mean Gaussian
process is the square root of m, and is called the standard deviation. Obviously, the

form factors of sine waves and Gaussian processes (i. e., the ratios of the peak to the
rms values) are different. However, the rms value of any given process represents the
same amount of power as the same rms value of any other process. Furthermore, the
rms value is linear in a linear transfer; that is, multiplication of a sine wave by a con-
stant has the same effect on the sine-wave rms value as multiplication of a Gaussian
process by the same constant has on the standard deviation of the Gaussian process.

DISTORTION COMPARED WITH TRANSFER FUNCTION

A computer program that calculates the distortion of a sine wave for a given
transfer function is described in appendix B. This program performs the following
operations.

1. Inputs data that specify the transfer function

2. Fits the least-squares curve to the transfer-function data points

3. Applies a sine wave of a given rms value to the transfer function and obtains
the output

4. Constructs a Fourier series on the transferred signal to obtain the harmonics
5. Calculates the distortion ‘ |
6. Repeats steps 3 to 5 for a different rms—value, if desired

Typical transfer functions and distortions obiained for various rms values are shown in
figures 4, 5, and 6.

18
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Figure 6, ~ 'I‘rans!ér function 3, distortion for transfer function 3, and moment
ratios for transfer function 3,

TRANSFERRED GAUSSIAN PROCESSES

- A computer i:rogram that applies samples from & Gaussian process to transfer
functions and examines the moment-ratio shifts is presented in appendix C. This com-
puter program performs the following operations.

1. Inputs the transfer-function polynomial coefficients

2. Generates the random mumbers
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4. Applies the random numbers to the transfer function

5. Calculates the first four moments of the transferred process

*

Evaluates the ratio (sz2 -m 4)/3:1122

-3

. Repeats as many iterations as desired

8. Plots a histogram of the results of step 6

Histograms produced by the computer program and contrasted with the results of the
untransferred Gaussian process are shown in figures 4(c), 5(c), and 6(c).

DISCUSSION OF RESULTS

A typical drooping transfer function, such as might be obtained from a ''tired"
eiectronics box, is shown in figure 4(a). This transfer function causes compression of

the input-signal peaks and should cause a positive shift in the ratio (311122 - m4)/3m22.

As showa in figure 4(c), such a shift does occur. For relatively small numbers of sam-
ples per set, the dispersion of points is so great that small amounts of distortion could
not be detected reliably. However, for sample sets as large as 500 (fig. 4(c)), smail
amounts of distortion can be detected readily. In earlier stages of this investigation,

a Kolmogorov-Smirnov goodness-of-fit test was incorporated into the computer pro-
gram that is described in appendix C. However, this test was eliminated when it be-
came evident that only rarely would a set be rejected as being from a non-Gaussian
distribution. The moment-ratio-shift test proved to be much more sensitive, especially
because, in the goodness-of-fit test, the sample is assumed to be from a Gaussian proc-
ess, and the computer must have an extremely good reason before it will reject a sam-
ple. In failure detection, the opposite assumption is more desirable, because the
penalty for taking a good unit off-line is not high.

The transfer function shown in figure 5(a) is the type that might be obtained in an
amplifier with too low a power-supply voltage. The transfer function flattens very
sharply and causes a moment-ratio shift in a Gaussian signal that has a rms value that,
in a sine wave, would cause no distortion. This difference in distortion is caused by
the difference between.the form factors of the two signals. \ The Gaussian signal has no
rigid peak value, in theory, and always exceeds the clipping value. For a signal that
was usually Gaussian, a standard-deviation value that would not cause excessive clip-
ping of the signal would have to be determined, -and that value would be the operating
level. Any clipping beyond that value obviously would show up quickly.

The transfer function shown in figure 6(a) is the type obtained when push-push
transistors are improperly biased. The transfer function chops out the center of the
distribution. Although not as detectable as in the other forms, small amounts of dis-
tortion caused by this type of transfer function are still readily detectable.
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In summation, the moment-ratio-shift test appears to be an effective way of
detecting incipient failures that are reflected in nonlinear transfer functions. The use-
fulness of this test would be a function of the failure modes and would have to be as-
sessed for each given situation. Nonetheless, the idea of using on-line signal statistics
in failure detection appears to have great promise and should be pursued.

SUGGESTIONS FOR FURTHER INVESTIGATION

Although the results presented in the preceding sections are interesting, they
point toward the possibility of work of a much broader and more important scope. Most
signals used in communications are not Gaussian and are far from stationary. Voice,
which is one of the most common types of communications signals, is neither Gaussian
nor stationary; voice signals vary in almost every way possible. However, this does
not mean that the use of on-line signal gtatistics as an aid in the detection of incipient
failures is unfeasible. Rather, this would appear to be a situation tailormade for the
application of learning theory, which is a discipline that has received much attention in

recent years.

Nonlinear operations are most likely to occur inside an electronics box. Because
the box is probably very small (particularly in a spacecraft), both the input and output
signals would be readily available. Furthermore, all future spacecraft will probably
have powerful general-purpose computers on board. It seems reasonable to suppose
that, in such a situation, the statistics of the input signal to the box could be learned
by the computer and compared with the statistics of the output signal of the box. A
significant shift in statistics would indicate an incipient failure.

Several aspects of learning theory (ref. 6) will probably be required in such an
application. The technique will most certainly require unsupervised learning (ref. 7),
because only general characteristics will be known in advance, and the signals will not
be stationary. Because of the nonstationary signal characteristics, a form of moving-
window technique with optimum stopping rules (ref. 8) will probably be required. Be-
cause any given signal has a great variety of statistics, some class of sufficient
statistics (ref. 8) must be chosen for manipulation of each signal type.

The most promising method of study in the use of on-line statistics to detect in-
cipient failures appears to be the application of learning theory. Specifically, the fol-
lowing steps should be taken.

1. Investigation of the statistical properties of various communications signals

2. Determination of sufficient statistics, ideally those that are generally appli-
cable in communications signals
" " 73, Application of nonsupervised learning 'techxiiques, probably of a moving-
window type, in the determination of the sufficient statistics

4. Determination of optimum stopping rules for making ''good-bad'" decisions
about on-line equipment
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CONCLUSIONS

The information presented in this report leads to the followirg conclusions.
1. The nonlinear transfer of a Gaussian signal can be detected by using on-line

signal statistics.

2. The moment-ratio-shift test is an effective method for the detection of very

small distortion levels.

3. Further investigation i8 warranted, specifically on the application of learning

theory to the problem of detecting incipient failures by using on-line signal statistics.

Manned Spacecraft Center

National Aeronautics and Space Administration
Houston, Texas, July 7, 1971
908-42-07-00-72
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APPENDIX A
COMPUTER PROGRAM FOR THE DETERMINATION
OF THE RATIOS OF GAUSSIAN MOMENTS

A computer program (fig. A-l)untgenenhssetsdcansﬁanlycﬁslﬁbuted
mambers, calculates moments of the sets, anid takes ratios of these

psendorandom
moments is described in this appendix. A block diagram of the camputer program is
shown in figure A-2. 'l‘heopenﬁonisdwcrihedasfollovs.

™

1. mmmmmmmu:&mm
a. NNUM — the marrber of random mumbers g set
b- m-awmmmmmﬁammmmmm

\

c. KRIJN-—-ﬂhemmberdtrialstnbem
d M — the highest order romest to be calculated
2 The instractica Z = RANDOM (NRAND) initializes the cammed random-mambar

L § mmsmmmmamﬁum
4. mm:mmmmm‘m
5. The cammed Sibroutine CAONTS calculates the first M momests. - -

o o
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7. The canmed scbrovtine HISI calculates and prirts a histogram of the RRUN
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APPENDIXB
COMPUTER PROGRAM FOR CALCULATION OF DISTORTION

A computer program (fig. B-1) that calculates the distortion of a sine wave
appliedtoaninputu-ansterfuncﬁonisdescribedinthisappendm The following list
iaadescripﬁono!thekeydatawdsthatareusedtntheopuatxonotﬂnscomputer

program. o
1. mmuowingeontrolparameteraareinmtontheinmaldatacards.

a. N — The number of ordered pairs (X, Y) in a set that defines the transfer
function

. b. NP — The mmber of increments into which 25 is to be divided for the
Fourier analysis , i

Nm—mmmberdmnlnesdthesinemvestobem
d. KC—mordcrdthopolymmlaltobeﬂttothetransterfnncﬂou
e. K — The order of the polynomial to be fit to the transfer function
{. N3 — The number of barmonics to be used in the Fourier series

g- KPOL-—Thoteattomvhetheuhuorpolymmiﬂeoeﬂiciemaetermim
thotnule:tnncﬁon , .

a) Azmtndlnkestheorderedpalrﬁ,?)tobemdin.

@) Ammm&emmmbemdm.
+.q{ -J_”

- 'tA

- A CRIT— A critical valao (f Such exists) above which the transfer fnction | -
takes on a well-defined value or approaches an asymplote {:

W—Ammme&ﬂwmerm
2. Wmmmm)mtobexadm, seven to a card.

S. Ordered pairs mr)ﬂntdeﬂneatnnafermncunnmtohereadm. cne
palr per card.

4. mmvahuhbouedmmdh. onnperurd.

Abloekdagnmdthhenmmﬁermhsbowninﬂgnnn-& 'l‘hoeompntu
program performs the following operations.

1. A decisionis Mmmmummmmmmma-
mdin. . :
“rui .

& i
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A block diagram of this computer program is shown in figure B-2. The computer
program performs the following operations.

1. A decision is made on whether data or input polynomial coemcients will de-
fine the transfer function, and the choice is read in.

2. The calling instructions CALL ORTHLS and CALL COEFS call library rou-
tines that {it a K-order polynomial to the input data, if such data have been read in.

3. The polynomial coefficients are written.

4. The ordipates of the input data to the transfer function (if such have been read
in) and the transferred results are written out.

$. The DO 10 loop sets the values of the abscissas where the Fourier analysis
will take place.

¢. The DO 20 loop sets the loop that allows iterative operation, with the rms
value of a sine wave as the variable. ..

7. The DO 30 loop (a) sets the peai value of the sine wave at 1. 414 times the
input rms value and (b) transfers these values through the transfer function (DO 40
loop).

8. The calling instruction CALL DFSRIE calls a library routine that performs
& Fourier analysis on the transferred sine wave.

9. The remainder of the computer progmm calculates the sum of the squares '
of the nonfundamental terms of the Fourier series and calculates the harmonic
distortion.
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Figure B-1.- Computer program for calcalation of distortion.
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APPENDIX C
COMPUTER PROGRAM FOR CALCULATION
OF DISTORTED GAUSSIAN MOMENTS

A computer program (fig. C-1) that generates Gaussianly distributed pseudoran-
dom numbers, applies the numbers to a transfer function, and examines the ratios of
moments of the result is described in this appendix. The following is a list of the key
data cards used in the operation of this computer program.

1. Initial data card
a. NPOL — The number of polynomial coefficients to be read in
b. NNUM — The number of pseudorandom numbers per set

¢. NRAND — An odd number that {8 used to initialize the random-number
generator

d. NRUN — The number of sets of numbers to be exercised
e. M — The highest order moment used
{f. NRMS — The number of different standard deviations to be used

g. INIT — A flexibility number that allows different groups of random num-
beratobensedfroma get

h. INCR — The increment value Ior a DO loop

i. CRIT — The critlcal value beyond which the transfer function is well
defined . E E:l-ii‘

2. POL values — five per card = . *
3. The rms values — five percard }
4. TITL1 — title for the histogram fﬁ

A block diagram of this computer program is shown tnﬁsute C-l. The program
operates as follows.

It
[ S P S L

1. The initial data card is read. f o ,\
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The DO 6 loop sets the outer loop for the number of number sets.

The DO 7 loop sets the loop to adjust the standard deviation.

The DO 8 loop performs the transfer of numbers.

The DO 10 loop calculates the moments and ratios of moments.

10. The subroutine HIS1 arranges and prints a histogram of the results.
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